Chemistry Chapter 22, 23 – Hydrocarbons & Functional Groups

22.1 Alkanes

<u>Organic Chemistry</u> - the study of carbon containing compounds. Found in living organisms.

Bonding & Atom Arrangement:

Single bonds to 4 atoms - tetrahedral shape.Multiple bonding - double or triple bonds.Carbon compounds can be in what is called normal (n) unbranched straight chains, branched chains, or in rings.

<u>Hydrocarbons</u> – simplest class of carbon compounds composed of hydrogen and carbon. <u>Saturated</u> - hydrocarbons with single bonds only. <u>Unsaturated</u> - hydrocarbons with multiple bonds present.

A. Classes of Hydrocarbons:

1. <u>Alkanes</u> - the simplest hydrocarbons, contain only single bonds.

General Formula of Alkanes:	C_nH_{2n+2}
CH ₄	CH_4
CH ₃ CH ₃	C_2H_6
CH ₃ CH ₂ CH ₃	C_3H_8
CH ₃ CH ₂ CH ₂ CH ₃	C_4H_{10}
CH ₃ CH ₂ CH ₂ CH ₂ CH ₃	$C_{5}H_{12}$
CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ CH ₃	C_6H_{14}

Naming Hydrocarbons:

Prefix	= # carbon atoms	Suffix =	type of bonds
meth-	1	-ane	alkane
eth-	2	-ene	alkene
prop-	3	-yne	alkyne
but-	4	-	-
pent-	5		
hex-	6		
hept-	7		
oct-	8		
non-	9		
dec-	10		

<u>Unbranched Alkanes</u> - use prefix for #carbons and suffix -ane.

Branched Alkanes

- 1. The <u>longest continuous chain</u> of carbon atoms(parent chain) gives the <u>root</u> <u>name</u> for the hydrocarbon.
- Number the carbons in the parent chain starting at the end closest to any branching (the first substituent). When a substituent occurs the same number of carbons from each end, use the next substituent to determine from which end to start numbering.

<u>Substituents</u> - when a group is substituted for hydrogen on an alkane chain.

- 3. <u>Name the substituent</u> by using the name of it's parent alkane, drop the -ane and add -yl.
- 4. <u>Specify the positions of substituent groups</u> with the carbon number.
 - A <u>hyphen</u> is written between the number and the name of the substituent.
- 5. When a given <u>substituent occurs more than once</u>, attach the appropriate prefix (di, tri, etc.) to the alkyl name.
- 6. The <u>alkyl groups</u> are listed in alphabetical order, disregarding any prefix.

22.3 Alkenes & Alkynes

2. <u>Alkenes</u> - hydrocarbons that contain double bond(s).

3. <u>Alkynes</u> - hydrocarbons that contain triple bond(s).

22.4 Isomers

<u>Structural Isomerism</u> - two or more molecules that have the same

chemical formula but different arrangements of the atoms.

ex. normal butane (n-butane) vs. 2-methyl-propane (isobutene)

ex. n-pentane vs. 2-methyl-butane vs. 2,2-dimethyl propane (isopentane)

23.1-3 Functional Groups

Functional Groups - groups of atoms that are the same within a hydrocarbon which causes them to react in a similar manner. Used to classify organic compounds.

1. <u>Halohydrocarbons</u> – have the presence of a halogen, -Cl -Br -I.

2. <u>Alcohols</u> - have the presence of the –OH, hydroxyl group.

<u>Naming</u>: The "e" in the parent hydrocarbon is replaced with "ol".

Use a number to indicate the location of the OH group (using the shortest distance).

	Alkane	<u>Alcohol</u>
ex.	methane	methanol (wood alcohol)
	CH ₄	CH ₃ OH

Produce by heating wood to a high temp in the absence of air. Causes blindness and death.

ethane	ethanol (grain alcohol)
CH ₃ CH ₃	CH ₃ CH ₂ OH

Ferment glucose in fruit (wine) or grain (corn, barley, rice) with yeast. Produces 13%. Distill this to make higher alcohol content beverages.

ethylene glycol (antifreeze) HOCH₂CH₂OH

Deadly to pets, similar structure to ethanol.

isopropanol

CH₃CHCH₃OH

Phenol (used to make polymers for plastics & adhesives)

<u>Classify Alcohols</u> : according to the number of hydro the carbon where the -OH is attached	ocarbon fragments bonded to
Primary Alcohol - one R group	RCH ₂ OH
Secondary Alcohol - two R groups	RCH2OH R'
Tertiary Alcohol - three R groups	R' RCH2OH R''

2. <u>Ethers</u> R - O - R Ethers have an oxygen bonded between two hydrocarbon ends.

3. <u>Amines</u> $\mathbf{R} - \mathbf{NH}_2$ Amines have a nitrogen bonded to a hydrocarbon.

0	Aldehydes have the carbonyl group at the end
II	of the hydrocarbon.
-R - CH	citral (lemons fragrance)
	vanillin (vanilla fragrance)
	Cinnamaldehyde (cinnamon fragrance)
	formaldehyde (preservative)
	butyraldehyde (rancid butter odor)
	0 11 -R - CH

Naming: The **"e"** in the parent hydrocarbon is replaced with **"-al"**. Examples: methanal = formaldehyde

ethanal = acetaldehyde Properties: Typically have strong odors. Produced: From oxidation of a primary alcohol. R-CH₂-OH \rightarrow R-C-H ll O

(primary alcohol) (aldehyde)

0

5. <u>Ketones</u> II Ketones have the carbonyl group C=O in the middle of the hydrocarbon.

Naming:The "e" in the parent hydrocarbon is replaced with "-one".Examples:propanone = acetone2-butanoneProperties:Solvents

Produced: From oxidation of a secondary alcohol.

R-CH-R --> R-C-R | || OH O (secondary alcohol) (ketone)

6. <u>Carboxylic Acids</u>: R-C-OH

(RCOOH)

Naming: The "e" in the parent hydrocarbon is replaced with "-oic acid". Examples: ethanoic acid (acetic acid)

propanoic acid (cheese odor), butanoic acid (rancid fat) Properties: Weak acids Produced: From oxidation of primary alcohols with a strong oxidizing agent. KMnO₄ R-CH₂OH -----> RCOOH O (primary alcohol) (carboxylic acid) Il 7. Esters: R-C-O-R Have the group –COOR.

Naming: The "-ol" in the <u>alcohol</u> is replaced with "-yl" for the <u>first</u> <u>part of the name</u> and the <u>last part of the name</u> uses the carboxylic acid where the "-ic" is replaced with "-ate".

Examples: isopropanol + ethanoic acid --> isopropylethanoate Properties: Often have sweet, fruity, or minty fragrances. isobutylmethanoate or isobutyl formate (raspberry) octylethanoate or octyl acetate (orange) ethylbutanoate or ethyl butyrate (pineapple) Produced:

RCOOH +	R-OH>	RCOOR +	HOH
(carboxylic acid)	(alcohol)	(ester)	(water)

23.5 Polymers

<u>Polymers</u> - large, usually chain-like molecules that are built from small molecules called <u>monomers</u>.

Examples:	ethylene monomers form polyethyl	ene
	$n CH_2 = CH_2> (-CH_2CH_2-)n$	n - large number usually
		thousands.

Properties:	Tough, flexible plastic used for piping, bottles, electrical insulation, film for packaging, garbage bags, etc.
	tetrafluoroethylene monomers for teflon nylon dacron (polyester from carboxylic acid + alcohol)
Reactions:	1. Addition Polymerization - monomers simply add together to form the polymer with no other products. ex. polyethylene
	2. Condensation Polymerization - a small molecule such as water is formed for each extension of the polymer chain. ex. polyester